9^4+x=27^8/x

Simple and best practice solution for 9^4+x=27^8/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9^4+x=27^8/x equation:



9^4+x=27^8/x
We move all terms to the left:
9^4+x-(27^8/x)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x-(27^8/x)+6561=0
We get rid of parentheses
x-27^8/x+6561=0
We multiply all the terms by the denominator
x*x+6561*x-27^8=0
We add all the numbers together, and all the variables
6561x+x*x-282429536481=0
Wy multiply elements
x^2+6561x-282429536481=0
a = 1; b = 6561; c = -282429536481;
Δ = b2-4ac
Δ = 65612-4·1·(-282429536481)
Δ = 1129761192645
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1129761192645}=\sqrt{43046721*26245}=\sqrt{43046721}*\sqrt{26245}=6561\sqrt{26245}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6561)-6561\sqrt{26245}}{2*1}=\frac{-6561-6561\sqrt{26245}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6561)+6561\sqrt{26245}}{2*1}=\frac{-6561+6561\sqrt{26245}}{2} $

See similar equations:

| 5y-10=8-4y | | 35=-4.9t^2+60 | | -61-3x+16x=11 | | −14+t=26 | | 5x-7(x-1)=-3x-8 | | 5x-6x-4x-5=30 | | -56x+83-x=-13 | | 2e-8=8-2e | | 4w/3=80 | | 2y+8-y-y=3+1 | | 0x+3=2x+4 | | 7•n-6=-20 | | w+-326=664 | | 3-6x+10x-10=17 | | 4c-20=5-c | | -9x+19x=40 | | 1/2(4z=8)-16=-2/3(9z-12) | | 8x+12+2x+20+4x+32=180 | | 4x+3x-5=11 | | N(c)=5c+50 | | 3d-11=70-6d | | x3–5x2–4x+20=0 | | n-(-179)=891 | | 48/x=16 | | (-4)=12x-1 | | 4z-14=50-4z | | 180=51+(5x+4) | | 45.90p=3 | | h−4=0 | | 7.h−4=0 | | 237.20=8(0.07m+21.80+0.10(21.80) | | 237.20=8(0.07m+21.80+0.10(21.80)) |

Equations solver categories